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In a recent paper we derived the free energy or partition function of the N-state
chiral Potts model by using the infinite lattice ‘‘inversion relation’’ method,
together with a non-obvious extra symmetry. This gave us three recursion rela-
tions for the partition function per site Tpq of the infinite lattice. Here we use
these recursion relations to obtain the full Riemann surface of Tpq. In terms of
the tp, tq variables, it consists of an infinite number of Riemann sheets, each
sheet corresponding to a point on a (2N − 1)-dimensional lattice (for N > 2).
The function Tpq is meromorphic on this surface: we obtain the orders of all the
zeros and poles. For N odd, we show that these orders are determined by the
usual inversion and rotation relations (without the extra symmetry), together
with a simple linearity ansatz. For N even, this method does not give the orders
uniquely, but leaves only [(N+4)/4] parameters to be determined.

KEY WORDS: Statistical mechanics; lattice models; chiral Potts model; free
energy.

1. INTRODUCTION

The free energy of the N-state chiral Potts model was obtained implicitly in
1988 (1) from the star-triangle relation, and explicitly in 1990 (2, 3) from the
functional relations for the finite-lattice transfer matrices. (The two
methods have since been shown to be equivalent.) (4, 5) Recently (6) we con-
sidered the infinite-lattice limit of these functional relations, and showed



that they reduced to the rotation and inversion relations (which exist for
most two-dimensional models, solvable or not), (7) or rather to a single
combined rotation-inversion relation. All other equations were either defi-
nitions of the auxiliary function y2(tq), or direct consequences of the
relations and definitions, so by themselves contained no new information.

We showed that the reason we could solve the infinite relations was
that we knew the analyticity properties in some ‘‘central’’ domain that
included part of the physical regime. In particular, we knew that y2(tq) had
only one branch cut in the tq-plane, instead of the N cuts one might expect.
This was equivalent to an extra symmetry for the free energy. It ensured
that one could use Wiener–Hopf methods to calculate the partition
function per site Tpq.

We found that Tpq satisfied three ‘‘recursion’’ relations: Eqs. (70), (71),
and (75) of ref. 6. (We could have obtained these directly from the solution
found in 1990.) Here we use these three relations to obtain the full
Riemann surface (in both the p and the q rapidity variables) on which Tpq

lives. It is a meromorphic function on this surface, its only singularities
being poles. Its poles and zeros occur only when tN

p =tN
q , lp=l ± 1

q .
Regarding Tpq as a function of tp, tq, its Riemann surface consists of

an infinite number of Riemann sheets. Each sheet is specified by a set
of N integers m0,..., mN − 1 associated with the p-variable, and another set
n0,..., nN − 1 associated with the q-variable. Thus it corresponds to a point on
a 2N-dimensional lattice. In fact, although the chiral Potts model does not
have the usual difference property (that one can choose the rapidities p, q
so that the Boltzmann weights, correlations and free energy depend only on
p, q via their difference p − q), we do find a weak residual version of
this property: Tpq is the same on all sheets obtained by incrementing
m0,..., mN − 1, n0,..., nN − 1 by an arbitrary integer. Hence the Riemann surface
can be associated with a lattice of reduced dimension 2N − 1.

The case N=2, when the model reduces to the Ising model, is special.
Then two of the integers m0,..., nN − 1 vanish, so the surface is one-dimen-
sional, being that of the elliptic function argument z=exp[p(up − uq)/KŒ]
of Eq. (B7) of ref. 6.

A knowledge of the Riemann surface, and of the orders of the poles
and zeros, gives us a great deal of information about the function Tpq.
We observe that these orders are linear in the m0,..., mN − 1, and in the
n0,..., nN − 1. Hence they are bilinear in the full set of 2N integers m0,...,
mN − 1, n0,..., nN − 1, depending only on their differences.

We ask the question: is this bilinearity, together with the basic inver-
sion and rotation relations sufficient to determine the orders of the poles
and zeros? We find that for N odd the answer is yes. For N even it is not
quite sufficient: there are [(N+4)/4] parameters still undetermined.
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2. DOMAINS AND RIEMANN SHEETS

The Boltzmann weights of the N-state chiral Potts model are functions
of a constant k, and two ‘‘rapidity’’ variables p and q. (2, 3) Let

kŒ=(1 − k2)1/2, w=e2pi/N. (1)

Then the variable p can be thought of as a point (xp, yp, tp, lp) on the
algebraic curve

xN
p +yN

p =k(1+xN
p yN

p ), tp=xp yp,

kxN
p =1 − kŒ/lp, kyN

p =1 − kŒlp.
(2)

Similarly q is the point (xq, yq, tq).
As we remark in ref. 6, if xp, xq, yp, yq, wxp all lie on the unit circle

and are ordered anti-cyclically around it, then all the Boltzmann weights
are real and positive, and therefore so is the partition function per site Tpq.
We refer to this case as the physical regime. Outside this regime we define
Tpq by analytic continuation.

This function Tpq therefore lives on a Riemann surface in both the p
and the q variables. To specify this surface, first consider the p variable.
If |lp | < 1, then xp lies in the region S of Fig. 1, while yp lies in one of
the N approximately circular regions R0,..., RN − 1 surrounding the points
1, w,..., wN − 1.

These regions shrink to points in the low-temperature limit kŒ Q 0, so
in this limit it is certainly true that

yp 4 w r if yp ¥ Rr.

We find it helpful to write ‘‘yp 4 w r,’’ by which we mean ‘‘yp ¥ Rr.’’

Fig. 1. The N+1 regions S, R0,..., RN − 1 of the complex plane in which xq and yq lie (for
N=3). R0,..., RN − 1 are the interiors of the approximate circles centred on 1, w,..., wN − 1. S is
the complex plane outside all N circles.
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We define a ‘‘domain’’ Dr for xp and yp simultaneously by saying that
if yp lies in Rr, then (xp, yp) lies in the domain Dr. More simply, we say
that p lies in Dr. We also say in this case that p has parity 0 and that it has
type r.

Conversely, if |lp | > 1, then yp lies in the region S and xp lies in one of
R0,..., RN − 1. If xp lies in Rr, then we say that (xp, yp) or p lies in the
domain D −

r, has parity 1 and type r. Let r, r be the parity and type of p.
Then

xp ¥ S, yp ¥ Rr, |lp | < 1 and p ¥ Dr if r=0,

xp ¥ Rr, yp ¥ S, |lp | > 1 and p ¥ D −

r if r=1.
(3)

We refer to the case when p and q both lie in D0, so that |lp | < 1,
|lq | < 1, yp, yq ¥ R0, xp, xq ¥ S, as the central regime or domain. It overlaps
the physical regime, so Tpq is readily extended to this domain. Series
expansions strongly suggest that it has no poles or zeros in the central
domain (as can be verified from the explicit solution (67) of ref. 6).

If we analytically continue from the central domain to |lp | > 1, then as
lp crosses the unit circle, xp enters one of the regions R0,..., RN − 1, say Rr1

,
while yp leaves R0 and enters S. Thus p goes from the domain D0 to D −

r1
.

Its type changes from 0 to r1, and its parity from 0 to 1.
We can then analytically continue from |lp | > 1 back to |lp | < 1, but p

will not necessarily return to D0: in general it will go to a new domain Dr2
.

And so on: p will move successively through a sequence of domains

D0, D −

r1
, Dr2

, D −

r3
, Dr4

,... (4)

Their types are 0, r1, r2, r3, r4,..., and their parities are 0, 1, 0, 1, 0,... .
From (2),

k2tN
p =1 − kŒ(lp+1/lp)+kŒ

2,

so the unit circle in the lp-plane corresponds to N straight-line segments
in the tp-plane, from w jg to w j/g, as in Fig. 2 of ref. 6. Here g=
[(1 − kŒ)/(1+kŒ)]1/N. In terms of the tp variable, each (xp, yp) domain is
therefore a Riemann sheet, with branch cuts along these straight-line seg-
ments. As one goes from a domain to a neighbouring domain, tp crosses
one of these N branch cuts and goes from one sheet to the next. We shall
use the words ‘‘domain,’’ ‘‘Riemann sheet’’ and ‘‘sheet’’ interchangeably.

We define Tpq by analytic continuation as p moves through this
sequence, starting from some initial value in D0. As p moves from one
domain to the next, Tpq moves from one Riemann sheet to the next.
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At this stage we do not know the Riemann surface on which Tpq lives
(i.e., how the Riemann sheets connect with one another), so we must be
prepared to remember this full sequence of domains in order to uniquely
specify the value of Tpq at a point p. Since the parities alternate, it is suffi-
cient to remember the domain types {r1, r2, r3, r4,...}.

Similarly, if initially the other rapidity variable q is in the central
domain D0, and is analytically continued through the sequence

D0, D −

s1
, Ds2

, D −

s3
, Ds4

,...

we must remember the sequence {s1, s2, s3, s4,...}.
Fortunately it seems that Tpq does not depend on whether p or q moves

first: i.e., how the two sequences {r1, r2, r3, r4,...}, {s1, s2, s3, s4,...} are
interleaved. Thus the Riemann surface in both variables is simply the union
of the two single-variable surfaces.

3. RECURSION RELATIONS FOR Tpq

In ref. 6 we obtained the two relations, true for r, s=0,..., N − 1:

Tr(w ryp, xp | xq, yq)

=
N T(w rxp, yp | xq, yq)

T(w−1xp, yp | xq, yq) T(xp, yp | xq, yq)
D

r

j=1

tp − w−jtq

(xp − w−jxq)(yp − w−jyq)

× D
N − 1

j=r+1

tp − w−jtq

(xp − w−jyq)(yp − w−jxq)
, (5)

Ts(xp, yp | w syq, xq)

=
N T(xp, yp | w sxq, yq)

T(xp, yp | w−1xq, yq) T(xp, yp | xq, yq)
D

s

j=1

tp − w j − 1tq

(xp − w j − 1yq)(yp − w jxq)

× D
N − 1

j=s+1

tp − w j − 1tq

(xp − w j − 1xq)(yp − w jyq)
, (6)

together with

T(xp, yp | xq, yq) T(wxp, yp | wxq, yq)
T(xp, yp | wxq, yq) T(wxp, yp | xq, yq)

=
(xp − xq)(wtp − tq)
(wxp − xq)(tp − tq)

. (7)

In these three relations the p-arguments (w ixp, yp) (for any i) of the
function T (without a suffix) lie in the initial domain D0, and so do the
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q-arguments (w ixq, yq). The function Tr on the lhs of (5) has p-arguments
(x −

p, y −

p)=(w ryp, xp) lying in the domain D −

r adjacent to D0. Similarly, Ts

on the lhs of (6) has q-arguments (x −

q, y −

q)=(w syq, xq) lying in the domain
D −

s adjacent to D0.
We can use (5) and (6) to obtain the function T on any of its infinitely

many Riemann sheets. For instance, if in (5) we allow p=(xp, yp) to leave
D0 and enter the neighbouring domain D −

m, where xp 4 wm, then the
arguments of T on the lhs will move to a sheet Drm. The three Ts on the rhs
move to the domains D −

m+r, D
−

m − 1, D −

m, respectively. These can in turn be
expressed in terms of T in D0 by again using (5).

We can repeat this procedure ad infinitem. At each stage the function
Tpq on the left-hand side of (5) moves to a new domain or sheet, while the
ones on the rhs move to domains or sheets that have already been
expressed in terms of the values of Tpq in the initial domain D0. Similarly,
we can use (6) to obtain Tpq on successive sheets in the q-variable.

At first sight we will obtain an exponentially infinite Cayley tree, each
(p, q) surface having 2N neighbours (N neighbours in the p variable, N in
the q-variable). The number of mth neighbours of the initial domain (where
p, q ¥ D0) will be 2N × (2N − 1)m − 1.

However, it is not as as bad as that. Consider the function Tpq on a
Riemann sheet of p-parity r and p-type r, and of q-parity s and q-type s.
Thus r, s=0, 1 and r, s=0,..., N − 1. Define an associated function
Ars

rs (ap, bp | aq, bq) by

T(xp, yp | xq, yq)=A00
rs (xp, w−ryp | xq, w−syq) if r=0, s=0,

=N/A01
rs (xp, w−ryp | yq, w−sxq) if r=0, s=1,

=N/A10
rs (yp, w−rxp | xq, w−syq) if r=1, s=0,

=A11
rs (yp, w−rxp | yq, w−sxq) if r=1, s=1.

(8)

In each case the p-arguments ap, bp of Ars
rs (ap, bp | aq, bq) lie in D0, and so

do the q-arguments aq, bq.
Then no matter how many times we iterate (5) and (6), the resulting

function Tpq will have an associated function of the form

Ars
rs (ap, bp | aq, bq)

= D
N−1

j=0
[(ap −wjaq)aj (ap −wjbq)ajŒ (bp −wjaq)bj (bp −wjbq)bjŒ (apbp −wjaqbq)cj]

× D
N−1

i=0
D

N−1

j=0
T(wiap, bp | wjaq, bq)rij, (9)
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where the exponents aj,..., rij are integers and the functions T on the rhs all
have p and q arguments lying in the initial sheet D0.

Further, we can always use (7) to eliminate the T(w iap, bp | w jaq, bq)
with i and j greater than zero, so we can require that

rij=0 if i and j > 0, (10)

leaving only r00, ri0 and r0j (i, j > 0) as possibly non-zero. There are then
at most 5N+2N − 1=7N − 1 non-zero exponents. Equating any two
Riemann surfaces with the same values of the function Tpq, it follows that
any Riemann surface (in both the p and q variables) can be specified by at
most 7N − 1 arbitrary integers (together with the two-valued integers r, s

and the N-valued integers r, s), so can be regarded as corresponding to a
point on a (7N − 1)-dimensional lattice.

In fact the lattice is of lower dimension still, since there are many rela-
tions between the exponents. For any rational number x, let [x] denote its
integer part, so that

[x] [ x < [x]+1,

and define

Fi, j=5i − 1
N

6−5i − j − 1
N

6−5 j
N
6 . (11)

Then Fij has value 0 or 1, and is periodic in i, j of period N, i.e., Fi+N, j=
Fi, j+N=Fij.

The relations between the exponents are conveniently expressed by
associating with each Riemann sheet two more sets of integers:2

2 We originally found the nj by keeping the p variables in D0 and looking at the orders of the
zeros of Tpq, considered as a function of q. Then mj=0 and the rhs of (25) becomes
2n−k+wk. In the normalization where the Boltzmann weights are free of poles we lose the wk

and the zeros are simply 2(−1)s n−k. Similarly, one can obtain the mj.

m={m0,..., mN − 1}, n={n0,..., nN − 1}.

The set m is varied when the p-domain is changed, and n when the
q-domain is changed. If m is the set on a sheet of parities r, s and types
r, s, and mŒ is the set m on a p-neighbouring sheet of parities rŒ, s and types
rŒ, s (the q variables being the same on each sheet), then rŒ=1 − r and

m −

j=mr+rŒ+mr+rŒ+1 − mj+r(1 − dr+rŒ, 0) − Fj, r+rŒ , (12)
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for j=0,..., N − 1, using the periodic convention

mj+N=mj, -j. (13)

Similarly, the set n on a sheet of parities r, s and types r, s is related to
the set nŒ on a q-neighbouring sheet of parities r, sŒ and types r, sŒ by
sŒ=1 − s and

n −

j=ns+sŒ+ns+sŒ+1 − nj+s(1 − ds+sŒ, 0) − Fj, s+sŒ. (14)

These recursion relations, together with the conditions

m0= · · · mN − 1=n0 · · · =nN − 1=0 in the initial sheet, where p, q ¥ D0

define the integers m0,..., mN − 1, n0,..., nN − 1 on all sheets. In particular, it
follows that

C
N − 1

j=0
mj=Nm − r, C

N − 1

j=0
nj=Nn − s, (15)

m and n being integers.
Define

gk= C
N − 1

i=0
mi+kni. (16)

Numerical Fortran experiments (in integer arithmetic) for small N and
sheets close to D strongly suggest that

aj=m − n − mj+r − mj+r+1+ns − j − 1+ns − j+ãj,

a −

j= − m − n+mj+r+mj+r+1+ã −

j,

bj=m+n − ns − j − ns − j+1+b̃j,

b −

j= − m+n+b̃ −

j, (17)

cj=2 gj+r − s+1 − 2 gj+r − s − 1 − 2 mj+r − s+s+2 ns − r − j+r

+mj+r+mj+r+1 − ns − j − 1 − ns − j+c̃j,

rij=(mr − i+1 − mr − i − 1) dj, 0+(ns − j+1 − ns − j − 1) di, 0+r̃ij,
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where

ãj=5 j
N
6+5j − r(1 − s)

N
6−5j+r − r

N
6−5j − s+s

N
6+(1 − r) s,

ã −

j=5j+r − r

N
6−5j − s − rs

N
6+r(1 − s),

b̃j= −5j+r − (1 − r)(1 − s)
N

6+5j − s − 1+s

N
6+r(1 − s),

b̃ −

j=5j+r − s − (1 − r) s

N
6−5 j

N
6+(1 − r) s,

c̃j=5j+r − r

N
6+5j − s+s

N
6−5 j

N
6−5j+r − s

N
6

− (1 − r) s+r(1 − s)(−1+2 dj, s − r),

r̃ij=di, 0dj, s − s+dj, 0di, r − r − di, 0dj, 0.

(18)

From (15), incrementing r(s) by N increments m(n) by 1, so the right-hand
sides of (17) are each periodic in r, s and j, of period N, as they should be.

Define

frs=r+s − 2rs, (19)

so that frs=0 if r=s, and frs=1 if r ] s. Our numerical experiments
also suggest that,

C
j

aj=C
j

b −

j=(N − 1)(1 − r) s+C
j

(nj − mj),

C
j

a −

j=C
j

bj=(N − 1) r(1 − s)+C
j

(mj − nj), (20)

C
j

cj= − (N − 1) frs,

the sums being from j=0 to j=N − 1. It follows that

C
j

(aj+a −

j+cj)=C
j

(bj+b −

j+cj)=0,

C
j

(aj+bj+cj)=C
j

(a −

j+b −

j+cj)=0.
(21)
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We also find that

C
j

j(aj+a −

j+bj+b −

j+cj)=0, mod N (22)

if N is odd or if r=s; if N is even and r ] s, then the rhs of (22) equals
N/2, modulo N.

These relations (20)–(22) ensure that no additional external constant
factors occur in (9). For instance, multiplying ap by wk, will introduce a
factor wkL, where L=; j (aj+a −

j+cj). From (21), this factor is unity.
Similarly for bp, aq, bq. Also, interchanging all p variables with the corre-
sponding q variables will introduce a factor (−1)I wJ, where

I=C
j

(aj+a −

j+bj+b −

j+cj), J=C
j

j(aj+a −

j+bj+b −

j+cj).

From (20) and (22), this factor is also unity.
If we ignore the requirement (15),3 the relations (18) are unchanged by

3 Presumably there is some variant of this symmetry that preserves the equations (17)
completely.

the substitutions r, s, r, s, m, n, mj, nj, aj, a −

j, bj, b −

j, cj, rij Q 1 − s, 1 − r,
1 − s, 1 − r, −n, −m, −n1 − j, −m1 − j, aj, bj+1, a −

j − 1, b −

j, cj, r−j, −i.

‘‘Dimension’’ of the Riemann Surface

We see that the 2N integers m0,..., mN − 1, n0,..., nN − 1 are sufficient to
specify the function Tpq on any sheet within its Riemann surface, so any
sheet can be associated with a point in a 2N-dimensional space. Further,
incrementing each of m0,..., nN − 1 (and therefore also m, n) by unity (or any
integer) leaves (17) unchanged, so the space can be reduced to one of
dimension 2N − 1. This appears to be a partial analogue for the chiral Potts
model of the rapidity ‘‘difference property’’ that plays such an important
role in the simpler models.

For N > 2 this appears to be the best one can do—each sheet of the
Riemann surface corresponds to a point in a (2N − 1)-dimensional space.
Note however that sheets are neighbours if their m-integers satisfy (12), or
if their n-integers satisfy (12). Hence neighbouring sheets do not necessarily
correspond to neighbouring points in m0,..., nN − 1-space.

For N=2 we have the additional relations m1 − r=n1 − s=0 for all
sheets, so m0, m1, n0, n1 enter (17) only via mr − ns and the space is one-
dimensional, as we observed in ref. 6.
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For N > 2 we note that the exponents aj,..., b −

j, rij are linear in the
integers m0,..., nN − 1, but the cj are linear only separately in m0,..., mN − 1 and
n0,..., nN − 1. They are bilinear in the full set of 2N integers, due to the
occurrence of the gj, as defined by (16).

The values of p={xp, yp, r, r, m0,..., mN − 1} completely specify the
point p, not only on the algebraic curve (2), but also on the Riemann
surface of Tpq. Similarly, q={xq, yq, s, s, n0,..., nN − 1} completely specifies q.
We shall refer to the corresponding Riemann sheet as the ‘‘sheet (m, n) .’’

4. ZEROS AND POLES OF Tpq

For ap, bp, aq, bq in the central domain D, the functions
T(w iap, bp | w jaq, bq) on the rhs of (9) are non-zero and analytic. Hence the
rhs of (9) is meromorphic in D, with zeros or poles only when

ap=w jaq and bp=bq, (23)

which implies apbp=w jaqbq. Thus its zero at this point is of order

aj+b −

0+cj. (24)

(Equivalently, its pole is of order − aj − b −

0 − cj.)
From (2), the relation xN

p =xN
q implies yN

p =yN
q and vice-versa, and

either implies tN
p =tN

q . Similarly, xN
p =yN

q implies yN
p =xN

q and again
tN

p =tN
q . From (8) it follows that the function T(xp, yp | xq, yq) is mero-

morphic throughout its Riemann surface, with zeros and poles only when
tN

p =tN
q . On the sheet (r, s, r, s, m, n) the zero at tp=wktq (k=0,..., N − 1)

is of order

zk=(−1)r+s (ak+s − r+b −

0+ck+s − r).

From (17) and (18) it follows that

(−1)r+s zk=2gk+1 − 2gk − 1 − 2mk+s+2nr − k+2r(1 − s)(dk, 0 − 1)+wk,
(25)

where

wk=5k+s − r − r(1 − s)
N

6−5 k
N
6+5r − s − (1 − r) s

N
6+frs. (26)
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The contribution wk has a simple explanation. Using the notation of
refs. 2 and 8, let us postulate the existence of functions Gi, j, Ḡi, j of p and q
such that Gi, j has simple zeros on the Riemann surface when

xq=w iyp and yq=w jxp, (27)

and Ḡi, j has simple zeros when

xq=w ixp and yq=w jyp. (28)

Any zero or pole of Tpq must occur at one of these points on some particu-
lar Riemann sheet.

Define Gpq by

Gpq=G(xq, yq)= D
N − 1

i=1
D
N − i

j=1
[GN − i, N+1 − j Ḡi, j]−1, (29)

Then Gpq is the function 1/tt̄ of ref. 2. We remark therein that its poles
contain just all the poles of the Boltzmann weight functions Wpq(n), W̄pq(n).
Hence for a finite square lattice of N sites with partition function Z, it is
true that Z/GN

pq has no poles on the Riemann surface.
It is therefore natural to define a normalized function T̃pq by

Tpq=GpqT̃pq. (30)

T̃pq is then the partition function per site in the normalization where the
Boltzmann weights are free of poles, and where there are no zeros common
to Wpq(0),..., Wpq(N − 1), and none common to W̄pq(0),..., W̄pq(N − 1).

On the sheet (r, s, r, s, m, n) we find from (29) that the pole of Gpq at
tp=wktq (k=0,..., N − 1) is of order − (−1)r+s wk (so numerically this is
either 0 or 1). Hence the term wk in (25) is the contribution of Gpq. The
preceding terms (all even integers) are the contribution of T̃pq.

Let hk be the function with simple zeros on the Riemann surface when
tp=wktq and xN

p =yN
q , yN

p =xN
q . Then

hk ’ D
N − 1

i=0
Gi, −k − i, (31)

where by f ’ g we mean herein that f and g have the same zeros and poles
(when tN

p =tN
q ) on the Riemann surface.
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Similarly,

h̄k ’ D
N − 1

i=0
Ḡi, −k − i, (32)

where h̄k has simple zeros when tp=wktq and xN
p =xN

q , yN
p =yN

q . Then
formally we can write (25) as

T̃pq ’ D (h̄k/hk)2Epq(k), (33)

where the product is over all Riemann sheets (r, s, r, s, m, n) and all values
0, ..., N − 1 of k, and the integer Epq(k) is

Epq(k)=gk+1 − gk − 1 − mk+s+nr − k+r(1 − s)(dk, 0 − 1). (34)

If r=s then only h̄k can have zeros, and if r ] s only hk.
We note that there are various formal identities between our G and h

functions, notably

D
j

Ḡij ’ xq − w iyp, D
i

Ḡij ’ yq − w jxp, D
j

Gij ’ xq − w ixp

D
i

Gij ’ yq − w jyp, hk h̄k ’ tp − wktq,
(35)

all products being over the integers 0,..., N − 1.
It may be possible to give explicit representations of our postulated

functions Gij, Ḡij, Gpq, hk, h̄k, T̃pq in terms of hyperelliptic functions, (9–11) but
we shall not do so here. Using them does greatly simplify the relations and
certainly provides a way of keeping track of the poles and zeros at tN

q =tN
p

on the Riemann surface. These are the only poles and zeros, apart possibly
from ones occurring when p has some particular value independent of q, or
q has some value independent of p. This suggests that herein the relation

fpq ’ gpq

is equivalent to the explicit identity

fpq fpŒqŒ

fpqŒ fpŒq
=

gpq gpŒqŒ

gpqŒ gpŒq
,

for all rapidities p, q, pŒ, qŒ. This implies that there exist single-rapidity
functions up, vq such that

fpq=up gpqvq.
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In all the cases where we have been able to test this hypothesis, e.g., by
using (35), we have found it to be true.

5. AUTOMORPHISMS

Three basic automorphisms that take a point on the curve (2) to
another such point are R, S, U, where

R: xRp=yp, yRp=wxp; S: xSp=y−1
p , ySp=x−1

p ;

U: xUp=wxp, yUp=yp.
(36)

If p lies in the initial domain D0 (so yp 4 1), then we can take Up to also lie
in D0; and Rp, Sp to lie in the adjacent domain D −

0.4

4 R and S are the same as in ref. 12, while R, U occur in ref. 13.

We can determine what happens when p is not in the initial domain D0

by analytic continuation. If p lies on a sheet that is a kth neighbour of D0,
a route to it being the sequence (4) of sheets of types {0, r1, r2,..., rk}, then
Up is also on a kth neighbouring sheet (so has the same parity r), but from
(36) the sequence to Up is {0, r1+1, r2, r3+1,..., rk+r}.5

5 Note that in general Up is not obtained from p by staying on the same sheet and simply
replacing xp by wxp.

As above, writing p={xp, yp, r, r, mj} for the full set of parameters
defining the rapidity p (with j=0,..., N − 1), it follows that

Up={wxp, yp, r, r+r, mj − 1+(−1)r (mN − 1 − m0) − rdj, 1}. (37)

Iterating, we obtain for all integers i

U ip={w ixp, yp, r, r+ir, mj − i+(−1)r (mN − i − m0) − rFj, i}. (38)

The r values should always be taken modulo N, so that 0 [ r < N. Then we
see, using (13), that UNp=p.

Similarly, Rp and Sp lie on (k+1)-th neighbouring sheets of D0, at the
termini of the routes {0, 0, r1+1, r2, r3+1,..., rk+r}, {0, 0, −r1, −r2, −r3,...,
−rk}, respectively, and

Rp={yp, wxp, 1 − r, r+r, mj − 1+r(1 − dj, 1)}, (39)

Sp={1/yp, 1/xp, 1 − r, −r, −mN+1 − j }. (40)
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Two combinations of automorphisms that we shall need are V=RU−1

and U iV:

Vp=RU−1p={yp, xp, 1 − r, r, mj+(−1)r (m1 − m0)} (41)

and

U iVp={w iyp, xp, 1 − r, r+i(1 − r), mj − i+(−1)r (m1 − mN − i) − (1 − r) Fj, i}
(42)

for any integer i.
The effect of these automorphisms on the second rapidity q can be

obtained at once by replacing p, r, r, m0,..., mN − 1 by q, s, s, n0,..., nN − 1.

6. RELATIONS FOR T̃pq AND ITS EXPONENTS

Going to the pole-free normalization (30), the relations (5)–(7) simplify
to

T̃r(w ryp, xp | xq, yq) ’
T̃(w rxp, yp | xq, yq) h̄2

1 h̄2
2 · · · h̄2

N − r − 1h2
N − r · · · h2

N − 1

T̃(w−1xp, yp | xq, yq) T̃(xp, yp | xq, yq)
(43)

T̃s(xp, yp | w syq, xq) ’
T̃(xp, yp | w sxq, yq) h̄2

0 h̄2
1 · · · h̄2

s − 1h2
s h2

s+1 · · · h2
N − 2

T̃(xp, yp | w−1xq, yq) T̃(xp, yp | xq, yq)
(44)

T̃(xp, yp | xq, yq) T̃(wxp, yp | wxq, yq)

T̃(xp, yp | wxq, yq) T̃(wxp, yp | xq, yq)
’ (hN − 1/h0)2. (45)

Again, in these relations as written, p, q both lie in the central domainD0.
However, we can now analytically continue to any Riemann sheet and use
the above automorphisms to obtain

T̃UrVp, q ’ T̃Urp, q h̄2
1 h̄2

2 · · · h̄2
N − r − 1h2

N − rh
2
N − r+1 · · · h2

N − 1/(T̃U − 1p, q T̃pq),

T̃p, UsVq ’ T̃p, Usq h̄2
0 h̄2

1 · · · h̄2
s − 1h2

s h2
s+1 · · · h2

N − 2/(T̃p, U − 1qT̃pq), (46)

T̃pq T̃Up, Uq/(T̃p, Uq T̃Up, q) ’ (hN − 1/h0)2

for all p, q. Note that in these relations r, s must both have values in the set
{0, 1,..., N − 1}.
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Substituting the form (33) of T̃pq, we obtain the exponent relations

− EUrVp, q(k+r)=EUrp, q(k+r) − EU − 1p, q(k − 1) − Epq(k)

+5k+(N − 1)(1 − frs)
N

6−5k+r
N

6+5 r
N
6,

− Ep, UsVq(k − s)=Ep, Usq(k − s) − Ep, U − 1q(k+1) − Epq(k)

+5k+(N − 1) frs

N
6−5k − s

N
6−5 s

N
6,

Epq(k)+EUp, Uq(k) − EUp, q(k+1) − Ep, Uq(k − 1)=frs(dk, 0 − dk, N − 1).

(47)

We have used Mathematica to verify for N=2,..., 12 that these equations
are indeed satisfied by (34). They are explicitly periodic in r, s, of period N,
so are true for all integers r, s.

For future reference, we note that the half-exponents for T̃p, Uaq are

Ep, Uaq(k − a)=k(r, s, k, a | m, n), (48)

where

k(r, s, k, a | m, n)=gk+1 −gk−1+nr−k −s(mk+mk+1)

+(−1)s (nN−a −n0 −mk−a)−sFr−k+a, a+r(1−s)(dk, a −1).
(49)

Also, those for and T̃Uap, q are

EUap, q(k+a)=gk+1 −gk−1 −mk+s+r(n−k+n1−k)

+(−1)r (m0 −mN− a+n−k −a)+rFk+a+s, a+r(1−s)(dk, −a −1).
(50)

7. THE FUNCTION y2(p, q)

In the derivation of Tpq given in refs. 2 and 3, an important role is
played by the auxiliary function y2(p, q). Noting that the T(xq, yq) in ref. 6
is Tpq, while T(wxq, yq) is Tp, Uq, it follows that Eq. (25) of ref. 6 can be
written, for all Riemann sheets, as

y2(p, q)=5(yp − wxq)(tp − tq)
y2

p (xp − xq)
6L Tpq

Tp, Uq
(51)
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writing y2(tq) in ref. 6 as y2(p, q). Also, in (53) of ref. 6 we obtain the result

log y2(p, q)=
1

2p
F

2p

0

11+lpe ih

1 − lpe ih
2 log 5D(h) − wtq

y2
p

6 dh (52)

for p, q both in the central domain D0, where |lp |, |lq | < 1. Here

D(h)=11 − 2kŒ cos h+kŒ
2

k2
21/N

(53)

Setting j=N in (14) of ref. 6 and using (21) and (23) therein, we find

TpqTp, Vq=
N (yp − xq)(yp − yq)(tN

p − tN
q )

y2
p (xN

p − xN
q )(yN

p − yN
q ) y2(p, U−1q)

(54)

for all Riemann sheets. The LHS is the free energy (per double site) of a
model with vertical rapidities p and alternating horizontal rapidities q, Vq.
This is the general ‘‘superintegrable’’ model discussed in ref. 14, so we see
that to within simple known scalar factors, 1/y2(p, U−1q) is the free energy
of this model. Indeed y2(p, U−1q) itself is the free energy (apart possibly
from simple scalar factors) of the ‘‘inverse’’ model introduced in ref. 14,
while y2(p, q) is the free energy of the model defined in (3.44)–(3.48) of
ref. 13 (with j=2 and k=0).

We can take (51) as the definition of y2(p, q). It follows at once that

y2(p, q) y2(p, Uq) · · · y2(p, UN − 1q)=
(yN

p − xN
q )(tN

p − tN
q )

y2N
p (xN

p − xN
q )

(55)

Also, considered as a function of tq, y2(p, q) only has a single branch
cut, from w−1g to w−1/g. Across the other N − 1 potential branch cuts it is
in fact an analytic function of tq. Together with (55), this implies that

y2(p, U iVU−iq)=vdi, N − 1
pq y2(p, q), (56)

where

vpq=
(xN

p − xN
q ) (yN

p − yN
q )

(xN
p − yN

q ) (yN
p − xN

q )
. (57)

(Going from q to U iVU−iq takes one from D0 to the neighbouring domain D −

i,
while leaving tq unchanged.)

One can also verify directly from (55) that

y2(p, q) y2(U iVU−ip, q)=(w−itp − wtq)2/y4
p. (58)
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Exponent Relations

The exponents of y2(p, q) are simpler than those of the free energy
function Tpq, from (51) and (33),

y2(p, q) ’ h2
0 T̃pq/T̃p, Uq ’ D (h̄k/hk)2Ẽpq(k), (59)

where

Ẽpq(k)=Epq(k) − Ep, Uq(k − 1) − frsdk, 0

=(−1)s (mk − 1 − mk+n0 − nN − 1 − rdk, 1). (60)

We see that the bilinear terms gk do not occur in Ẽpq(k), leaving only terms
that are fully linear in the mj and nj.

The Eqs. (55), (56), and (58) imply that the exponents Ẽpq(k) satisfy

Ẽpq(k)+Ẽp, Uq(k − 1)+ · · · +Ẽp, UN − 1q(k − N+1)=−frs,

− Ẽp, UiVU − iq(k)=Ẽpq(k)+di, N − 1, (61)

Ẽpq(k) − ẼUiVU − ip, q(k)=(1 − 2 frs) dk, i+1

for all r, s, k, m0,..., mN − 1, n0,..., nN − 1. Indeed we find, using (60) and (37),
that this is so.

The half-exponents for Ẽp, Uaq are

Ẽp, Uaq(k − a)=(−1)s (mk − a − 1 − mk − a+n−a − n−a − 1 − rdk, a+1+sda, N − 1).
(62)

8. ‘‘SUFFICIENCY’’ OF THE ROTATION AND INVERSION

RELATIONS

As is consistent with series expansions, the function Tpq is non-zero
and analytic in the central (physical) domain D0. Given this, the recursion
relations (5)–(7) are certainly sufficient to determine the Riemann surface
on which Tpq lives, that Tpq is meromorphic on this surface, and to give the
orders (exponents) Epq(k) of all its zeros and poles on every sheet.

This goes a long way towards defining Tpq. To complete the descrip-
tion one needs to establish that the ratio of two such functions with the
same zeros and poles has some periodicity property from sheet to sheet
so that it is bounded over the whole surface. It is certainly entire, so by
Liouville’s theorem it would then have to be a constant. Such constants can
usually be fixed from special cases.
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We shall not discuss this problem of completing the description further
herein, but will suppose that it can be done. Here our concern is to see if
the weaker rotation and inversion relations can be used to determine the
exponents Epq(k).

More specifically, the rotation and inversion relations, together with
the analyticity properties in the central domain, are known to be sufficient
to determine the free energy for the two-dimensional lattice models with
the ‘‘rapidity difference property.’’6

6 This property implies that such a model can be parametrized in terms of single-argument
Jacobi elliptic functions, which fixes the Riemann surface for the free energy.

The chiral Potts model does not possess the rapidity difference prop-
erty, and there is no parametrization in terms of single-argument Jacobi
elliptic functions. Nevertheless, we can ask whether its rotation and inver-
sion relations, together with some simple and plausible ansatz, are suffi-
cient to determine the free energy exponents Epq(k). This is the question we
address in the remainder of this paper.

The Relations

From Eqs. (39), (40), and (10) of ref. 6, the rotation and inversion
relations are

Tq, Rp=Tpq, TqpTpq=rpq, (63)

where

rpq=
N (xp − xq)(yp − yq)(tN

p − tN
q )

(xN
p − xN

q )(yN
p − yN

q )(tp − tq)
. (64)

From these we can deduce that

TRp, qTpq=rRp, q, Tp, RqTpq=rpq. (65)

These two equations can be obtained from (5) and (6) by setting r=s=0
and replacing either xp or xq by wxp or wxq. They can also be obtained by
setting r=s=N − 1 and replacing either p or q by Rp or Rq. There is
therefore an overlap between (63) and the recursion relations (5) and (6),
but the latter can not be deduced from the former.

Using (29), (30), and (63) become

T̃q, Rp ’ T̃pq, T̃qpT̃pq ’ (h1h2 · · · hN − 1)2. (66)
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On a given Riemann sheet of p-parity and type r, r, and q-parity and
type s, s, specified by the integers m0,..., mN − 1, n0,..., nN − 1, let the order
of the zero when tp=wktq be 2 (−1)r+se(r, s, k, r, s | m, n), where m=
{m0, ..., mN − 1} and n={n0, ..., nN − 1}. Then, analogously to (33), we can
write

T̃pq ’ D (h̄k/hk)2e(r, s, k, r, s | m, n), (67)

the product being over all zeros (and poles), and all Riemann sheets.
Are the rotation and inversion relations (66) sufficient to fix

e(r, s, k, r, s | m, n) as the Epq(k) given by (34)? First we must note that there
are severe self-consistency restrictions on the exponents e(r, s, k, r, s | m, n),
for any meromorphic function on the Riemann surface.

Consistency

Consider some particular zero, at tp=wktq, on some particular sheet
of types r, s. For definiteness, take the parities r, s to be zero. Then (since
yp 4 w r, yq 4 w s) the zero is at xp=wk+s − rxq, yp=w r − syq.

Now move p and q to adjacent sheets of types rŒ, sŒ, respectively, so
their parities both become one. Now consider the zero at tp=wkŒtq. This
must be when xp=w rŒ − sŒxq and yp=wkŒ+sŒ − rŒyq. If k=kŒ=r+rŒ − s − sŒ,
this is the same zero as the one on the previous sheet: we have simply
followed it from one sheet to the next. Its exponent (an integer) must be the
same, so

e(r, s, k, r, s | m, n)=e(1 − r, 1 − s, k, rŒ, sŒ | mŒ, nŒ), (68)

provided k=r+rŒ − s − sŒ and mŒ, nŒ are given by (12) and (14). We have
only established this condition for r=s=0, but the same result is
obtained for all r, s.

This is a very strong condition on the exponents e(r, s, k, r, s | m, n). It
must be true for all values of r, s, r, s, rŒ, sŒ, and all values of the integers
mj, nj. Furthermore, it must be true for any meromorphic function on the
Riemann surface. Hence it is true for the exponents Ẽpq(k) of y2(p, q) as
well as those of Tpq and T̃pq.

Rotation and Inversion

From (27)–(32), exhibiting the dependence of hk, h̄k on p, q:

[hk]qp=[h−k]pq, [h̄k]qp=[h̄−k]pq, (69)

[hk]q, Rp=[h̄−k − 1]pq, [h̄k]q, Rp=[h−k − 1]pq. (70)
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Together with (67), (66), and (39), these imply the relations

e(r, s, k, r, s | m, n)=−e(s, 1 − r, −k − 1, s, r+r | n, Rm), (71)

e(r, s, k, r, s | m, n)+e(s, r, −k, s, r | n, m)=frs(dk, 0 − 1), (72)

true for all r, s, k, r, s, m, n. Here Rm is the result of the operation R on
the set m, so from (39) it follows that (Rm)j=mj − 1+r(1 − dj, 1).

Other Elementary Relations
There are no zeros or poles of Tpq or T̃pq in the central domain D0,

which is when m=n=0, so

e(0, 0, k, 0, 0, | 0, 0)=0. (73)

The model also possesses a reflection symmetry. (12) Let S be the
automorphism defined in (36) and (40). Then the Boltzmann weights satisfy
WSq, Sp(n)=Wpq(n), W̄Sq, Sp(n)=W̄pq(−n). Replacing p, q by Sq, Sp therefore
reflects the lattice about its SW–NE axis. This does not change the
partition function, so TSq, Sp=Tpq.

It also leaves Gij unchanged, while replacing Ḡij by Ḡji. The product
over i, j in (29) is symmetric in i, j, so Gpq is unchanged and from (30)

T̃Sq, Sp=T̃pq. (74)

From (67) it follows that

e(1 − s, 1 − r, k, −s, −r | Sn, Sm)=e(r, s, k, r, s | m, n), (75)

where Sm is S acting on the set m, so from (40) (Sm)j=−mN+1 − j. Similarly
for Sn.

A Bilinear Ansatz
To give the free energy, the rotation and inversion relations must

always be supplemented by analyticity assumptions, We know from the
result (34) that e(r, s, k, r, s | m, n) is linear in the mj and nj separately, and
hence bilinear in their combination. This seems to be a basic property that
one may have expected, so we assume that there exist coefficients
A, B, C, D such that

e(r, s, k, r, s | m, n)

=A(r, s, k, r, s)+ C
N − 1

j=0
[B(r, s, k, r, s | j) mj+C(r, s, k, r, s | j) nj]

+ C
N − 1

i=0
C

N − 1

j=0
D(r, s, k, r, s | i, j) minj (76)
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for all integers mj, nj. For generality we allow the coefficients to explicitly
depend on the types r, s of the Riemann sheet.

There are thus 4N3(N+1)2 unknown coefficients to determine. Rather
than proceed fully algebraically, we have looked at modest values of N (not
bigger than 12) and used Mathematica (with mj, nj arbitrary) to determine
the number of variables fixed by the various equations. Thus the following
remarks are extrapolated conjectures from our observations.

We take N \ 3. As we noted above, the Ising case N=2 is special
in that then the mj and nj are not linearly independent, but satisfy
m1 − r=n1 − s=0. All the solutions we write down are valid for N=2, but
there may be other solutions, so that our remarks concerning the number
of solutions may not apply.

First we substituted the ansatz (76) into the consistency condition (68)
and observed that the number of undetermined coefficients reduced to
2N2(N+1). Since one can fix k, r − s and (−1)r+s in this condition, this
means that for each such case there are just N+1 unknown coefficients,
i.e., N+1 linearly independent functions satisfying (68).

We know what these functions are. The functions T̃p, Uaq, T̃Uap, q,
y2(p, Uaq) are all meromorphic on the Riemann surface. Their exponents,
given by (49), (50), and (62), must therefore satisfy (68). Taking a=
0,..., N − 1, we obtain 3N solutions of (68). They cannot all be linearly
independent, but those in the first set certainly are, so that gives us N solu-
tions. The remaining one is a constant—independent of the mj and nj.

It follows that e(r, s, k, r, s | m, n) must be of the form

e(r, s, k, r, s | m, n)

=c(r, s, k, r − s)+ C
N − 1

a=0
c(r, s, k, r − s | a) k(r, s, k, a | m, n) (77)

where the coefficients c, c satisfy

c(r, s, k, l)=c(1 − r, 1 − s, k, k − l),

c(r, s, k, l, a)=c(1 − r, 1 − s, k, k − l, a),

so there are 2N2(N+1) independent coefficients c, c, as yet undetermined.
The consistency condition (68) is now satisfied.

For N odd, the rotation relation (71) reduces the number of unde-
termined coefficients to N(N+1). Then the inversion relation (72) fixes all
the coefficients, giving the solution (34). The extra relations (73), (75) are
then satisfied.
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For N even and greater than 2, (71) reduces the number of unde-
termined coefficients to N(5N+6)/4. Then (72) further reduces the
number to [(N+4)/4] (so for N= 4, 6, 8, 10, 12 the numbers are 2, 2, 3,
3, 4). The other relations (73) and (75) are satisfied by this solution, so do
not reduce the number of undetermined coefficients any further. The
solution is then of the form

Epq(k)+h(r − s − k+2r − 2s) f(r, s, k | m, n),

where Epq(k) is given by (34) and

f(r, s, k | m, n)=gk+1 − gk − 1 − mk+s+nr − k

+ C
N − 1

a=0
[(−1)a − k − s ma − (−1)a+k − r na].

These functions have the weak difference property that they are unchanged
(for N even) by incrementing all of m0,..., mN − 1, n0,..., nN − 1 by the same
arbitrary integer, so no further restrictions can be obtained by making this
requirement.

The coefficients h(j) are integers, subject only to the constraints

h(j)=h(N − j)=h(N+j), and h(j)=0 if j is odd.

It follows that just [(N+4)/4] of them (all with j even) remain unde-
termined.

To summarize: if N is odd, the rotation and inversion relations,
together with the consistency condition (68) and the bilinear ansatz (76),
are sufficient to determine the exponents e(r, s, k, r, s | m, n). Surprisingly,
one does not need the analyticity and non-zeroedness of Tpq in the central
physical domain D0, i.e., the relation (73).

The same is true for N even and r − s − k odd. In both these cases we
find that there is no explicit dependence of e(r, s, k, r, s | m, n) on the types
r, s of the Riemann sheet.

For N even and r − s − k even they are not quite sufficient, but they
leave only [(N+4)/4] parameters to be determined. If one also (guided by
the other cases) assumes that e(r, s, k, r, s | m, n) is not explicitly dependent
on r or s, then there is only one undetermined coefficient left.

As we remarked above, a knowledge of the orders of the poles and
zeros of a meromorphic function does not by itself fix the function, but it
goes a long way towards it. For instance, one might observe that the orders
Epq(k) satisfy the relations (47) and then guess the full set of recursion rela-
tions (43)–(45), and hence (5)–(7). One could then test these relations from
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series expansions. They imply the vital Assumption 2 of ref. 6, so one could
then use the method of ref. 6 to obtain the result (67) therein.

9. SUMMARY

We have shown that the partition function per site Tpq lives on a
Riemann surface with an infinite number of sheets, each sheet correspond-
ing to a point on a (2N − 1)-dimensional lattice. However, one should note
that adjacent sheets need not correspond to any simple geometric definition
of adjacent points: the adjacency rules are given by (12) and (14).

It is a meromorphic function on this surface, with zeros and poles only
when tp=wktq for k=0,..., N − 1. The orders of these zeros (the negative
of the order of the poles) are bilinear in the integers m0,..., nN − 1 that specify
the sheet. If we assume this bilinearity (with coefficients that may depend
on k and the parities and types of the Riemann sheet), then for N odd they
can be obtained from the rotation and inversion relations. For N even this
procedure does not uniquely fix the orders, but does determine them to
within a small number [(N+4)/4] of free parameters.

The integers m0,..., nN − 1 (more precisely the differences of the mj, and
of the nj) are connected with the variables of the hyperelliptic parametriza-
tion of the chiral Potts model (9) (with u, v therein interchanged). We hope
to discuss this point in a later paper, and at least present an elliptic function
expression for y2(tq) in the case N=3.

A significant motivation for this work has been the still outstanding
problem of obtaining the spontaneous magnetization (order parameter) of
the chiral Potts model. There is an elegant conjecture (Eq. (3.13) of ref. 15,
Eq. (1.20) of ref. 16, Eq. (15) of ref. 17) for this property, which is almost
certainly true, but has not been proved. Following the method of Jimbo,
Miwa, and Nakayashiki, (18) the author has derived functional relations for
a generalized order parameter. (19, 20) These have a similar structure to the
inversion/rotation relations for the free energy. If one could solve them,
then one would have verified the conjecture.

It was therefore the author’s hope that the techniques of this paper
could be applied to solving the order parameter relations. It must be
admitted that preliminary results are not encouraging. If we assume that
the function lives on the same Riemann surface as Tpq (which is not
obvious), and that the orders (exponents) of the poles and zeros when
tN

p =tN
q are bilinear in the mj, nj, then for N odd we find the solution is

unique, but is merely the ‘‘wrong solution’’ we obtained in Eq. (72) of
ref. 19. So we are no further forward.

It is possible that this function has poles and zeros other than those
when tN

p =tN
q : we have found some suggestion of this in preliminary

24 Baxter



low-temperature expansion calculations, and hope to discuss this in a later
paper. If so, then the order parameter function may be much more com-
plicated than Tpq, and the simple ideas we used here may need considerable
expansion.

ACKNOWLEDGMENTS

This work was supported in part by the Australian Research Council

REFERENCES

1. R. J. Baxter, Free energy of the solvable chiral Potts model, J. Stat. Phys. 52:639–667
(1988).

2. R. J. Baxter, Calculation of the Eigenvalues of the Transfer Matrix of the Chiral Potts
Model, Proc. Fourth Asia-Pacific Physics Conference (Seoul, Korea, 1990), Vol. 1 (World-
Scientific, Singapore, 1991), pp. 42–58.

3. R. J. Baxter, Chiral Potts model: Eigenvalues of the transfer matrix, Phys. Lett. A
146:110–114 (1990).

4. R. J. Baxter, Equivalence of the two results for the free energy of the chiral Potts model,
J. Stat. Phys. 98:513–535 (2000).

5. H. Au-Yang, B.-Q. Jin, and J. H. H. Perk, Baxter’s solution for the free energy of the
chiral Potts model, J. Stat. Phys. 102:471–499 (2001).

6. R. J. Baxter, The ‘‘inversion relation’’ method for obtaining the free energy of the chiral
Potts model, cond-mat/0212075, to appear in Phys. A.

7. R. J. Baxter, The inversion relation method for some two-dimensional exactly solved
models in lattice statistics, J. Stat. Phys. 28:1–41 (1982).

8. R. J. Baxter, Elliptic parametrization for the three-state chiral Potts model, in Integrable
Quantum Field Theories, L. Bonara et al., eds. (Plenum Press, New York, 1993),
pp. 27–37.

9. R. J. Baxter, Hyperelliptic Function Parametrization for the Chiral Potts Model, Proc.
Intnl. Congress of Mathematicians, Kyoto, 1990 (Springer-Verlag, Tokyo, 1990), pp. 1305–
1317.

10. R. J. Baxter, Elliptic parametrization of the three-state chiral Potts model, in Integrable
Quantum Field Theories, L. Bonora et al., eds. (Plenum Press, New York, 1993), pp.
27–37.

11. R. J. Baxter, Some hyperelliptic function identities that occur in the chiral Potts model,
J. Phys. A. 31:6807–6818 (1998).

12. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, New solutions of the star-triangle relations
for the chiral Potts model, Phys. Lett. A 128:138–142 (1988).

13. R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Functional relations for transfer
matrices of the chiral Potts model, Internat. J. Modern Phys. B 4:807–870 (1990).

14. R. J. Baxter, Superintegrable chiral Potts model: Thermodynamic properties, an ‘‘inverse
model,’’ and a simple associated Hamiltonian, J. Stat. Phys. 57:1–39 (1989).

15. S. Howes, L. P. Kadanoff, and M. den Nijs, Quantum model for commensurate-incom-
mensurate transitions, Nuclear Phys. B 215[FS7]:169–208 (1983).

16. G. Albertini, B. M. McCoy, J. H. H. Perk, and S. Tang, Excitation spectrum and order
parameter for the integrable N-state chiral Potts model, Nuclear Phys. B 314:741–763
(1989).

17. M. Henkel and J. Lacki, Integrable chiral Zn quantum chains and a new class of trigo-
nometric sums, Phys. Lett. A 138:105–109 (1989).

The Riemann Surface of the Chiral Potts Model Free Energy Function 25



18. M. Jimbo, T. Miwa, and A. Nakayashiki, Difference equations for the correlation func-
tions of the eight-vertex model, J. Phys. A 26:2199–2210 (1993).

19. R. J. Baxter, Functional relations for the order parameters of the chiral Potts model,
J. Stat. Phys. 91:499–524 (1998).

20. R. J. Baxter, Functional relations for the order parameters of the chiral Potts model: low
temperature expansions, Phys. A 260:117–130 (1998).

26 Baxter


	1. INTRODUCTION
	DOMAINS AND RIEMANN SHEETS
	RECURSION RELATIONS FOR ...
	ZEROS AND POLES OF ...
	AUTOMORPHISMS
	6. RELATIONS FOR tilde1T1inf1PQ1 AND ITS EXPONENTS
	THE FUNCTION ...
	SUFFICIENCY OF THE ROTATION AND INVERSION RELATIONS
	9. SUMMARY
	ACKNOWLEDGMENTS

